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ABSTRACT 

In this review, we present our recent results for atomistic mechanisms of damage nucleation and 

growth and dynamic fracture in silica glass.  These results have been obtained with multimillion-

to-billion atom, parallel, molecular dynamics simulations of: (1) the interaction and coalescence 

of nanovoids in amorphous silica subjected to dilatational strain; and (2) the nucleation, growth 

and healing of wing cracks and damage nanocavities in silica glass under impact loading. We 

will also give an overview of our current efforts to perform dynamic fracture simulations over 

microsecond time scales and multiscale simulations of stress corrosion cracking in silica glass. 
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§1 INTRODUCTION 

Silica glass is often thought of as a prototype brittle material.  The conventional view of 

failure in silica glass under tensile loading is that a crack propagates by breaking Si-O bonds. 

This failure scenario involving unzipping of chemical bonds is quite different from the way 

metals fracture.  In metallic systems a crack may emit dislocations, and cavities may form in the 

damage zone surrounding the crack tip. 

About a decade ago, we performed molecular dynamics (MD) simulations of fracture in a 

pre-cracked sample of amorphous silica (a-SiO2) subjected to Mode-I loading.  The simulations 

revealed damage nucleation in the form of nanometer scale cavities in front of the pre-crack tip.  

On increasing the load, we observed growth and coalescence of nanocavities, crack extension 

and propagation, and merging of damage cavities with the advancing crack front eventually 

causing failure. These results raised a serious question: Are the observed damage and failure 

mechanisms in a-SiO2 caused by high strain rate deformation in the MD simulation or will they 

also manifest themselves in quasi-static fracture?  

In 2003, Bouchaud and co-workers provided a definitive answer to this question in a 

paper entitled “Glass Breaks like Metal, but at the Nanometer Scale”. In their stress corrosion 

cracking experiment, they observed damage nanocavities around the crack in silica glass with an 

atomic force microscope (AFM).  Just as in the dynamic fracture simulations, the experimental 

group also observed growth and coalescence not only among the damage nanocavities but also 

between the crack front and nanocavities.   
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In this review, we will describe two additional MD simulations that reveal atomistic 

mechanisms of (1) nanovoid growth and the interaction and coalescence of nanovoids in a-SiO2 

under tensile loading, and (2) growth and healing of cracks in silica glass under multiaxial 

compression.  In section 2, we will describe the parallel MD approach used to perform these 

multimillion-to-billion atom MD simulations.  Section 2 also contains a description of the 

interatomic potential, and its validation through comparison with experiments and first-principles 

calculations.  In section 3 we will present results of billion-atom MD simulations of interaction 

and coalescence among nanovoids in a-SiO2 under hydrostatic tension, followed by multimillion-

atom simulations of wing crack formation, growth and healing in a-SiO2.  Section 4 provides an 

overview of the work in progress, which is focused on two sets of simulations: (1) multimillion-

atom MD simulations over microsecond time scales to study the effect of strain rate on 

deformation and fracture in a-SiO2; and (2) hybrid quantum, classical MD and continuum 

simulations of stress corrosion cracking in silica glass.  

§2 PARALLEL MOLECULAR DYNAMICS SIMULATIONS  

§2.1 Interatomic Potential  

MD simulation approach provides the positions and velocities of an ensemble of atoms 

through the solution of Newton’s equations of motion. This information is used to calculate 

structural, thermodynamic, mechanical, and dynamical properties. The essential input needed to 

perform an MD simulation is the potential through which atoms interact. The interatomic 

potential for silica consists of two-body and three-body terms.  The two-body potential includes 
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steric repulsion due to Pauli exclusion principle, screened coulomb interaction arising from 

charge transfer between silicon and oxygen, and charge-dipole interaction due to atomic 

polarizibilities: 

 

� 

V
ij

(2)(r) = A(σ i + σ i)
η ij

rη ij
+
ZiZ j

r
e−r / r1s −

(α iZ j
2 + α jZi

2)
2r4

e−r / r4 s   (1) 

The three-body potential consists of bond-stretching and bond-bending covalent interactions: 

 

� 

V jik
(3) (rij ,rik ) = B jik exp(

γ
rij − r0

+ γ
rik − r0

)[cosθ jik − cosθ jik ]
2 Θ(r0 − rij )Θ(r0 − rik )  (2) 

The interaction potential is validated by comparing the MD simulation results with 

measurements of structural correlations, elastic moduli, and phonon density of states of a-SiO2.  

Amorphous silica is generated by the melt-quench method.  Starting with an atomic 

configuration of β-cristobalite, the system is heated to 3000K, which is well over the melting 

temperature.  This molten system is thermalized and cooled to room temperature.  The system is 

well equilibrated at various intermediate temperatures and also at room temperature.  

Figure 1(a) shows the comparison between neutron scattering measurements and MD 

calculation of static structure factor, S(q). Figure 1(b) shows experimental and MD results for the 

radial distribution function T(r) = r2g(r), where g(r) is the pair-distribution function. The 

simulation results for S(q) and T(r) are in excellent agreement with the experiment.  The 

agreement between MD and experimental measurements of T(r) is especially significant because 

this function is more sensitive to medium-range correlations in silica glass than g(r).  The 

differences between experimental and MD results for T(r) is less than 4% over the entire range of 

distances. 
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Figure 1: Comparison between MD simulation and experimental results for static structure 

factor and radial distribution function T(r) = r2g(r). 
 

MD simulations provide a detailed picture of connectivity of atoms in a-SiO2.  Figure 2 is 

a snapshot of an a-SiO2 network configuration at room temperature.  In this network, each Si 

atom is bonded with 4 O atoms in the form of a SiO4 tetrahedron and each O atom connects a 

pair of these tetrahedra in a corner-sharing configuration.  The Si-O bonds in corner-sharing 

tetrahedra form –Si-O-Si-O– rings of various sizes with the ring distribution peaking at 6-

membered rings, i.e., 6 Si-O pairs connected in a ring configuration. 
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Figure 2: Snapshot of Si-O bond network in a-SiO2. Yellow and red spheres represent silicon 

and oxygen atoms, respectively.  
 

We have also calculated the elastic moduli and fracture toughness to assess the validity of 

our interatomic potential in describing the mechanical properties of a-SiO2.  Table 1 shows a 

comparison between the MD results and experimental values of elastic moduli in a-SiO2.  The 

MD results are in reasonable accord with experiments—the deviations are less than 10%.  The 

fracture toughness K1c calculated with MD is 1 MPa.m1/2, and the experimental values range 

between 0.8 and 1.2 MPa.m1/2. 

 
Table 1: Comparison between the MD and experimental data for elastic moduli of a-SiO2. 

Bulk Properties of a-SiO2 
 MD Experiment 

C11 (GPa) 75.9 76.52 
C12 (GPa) 20.9 18.78 
C44 (GPa) 27.5 28.7 

 

First-principles quantum mechanical (QM) calculations based on density functional 

theory (DFT) further validate our interatomic potential for silica.  We prepared a 192-atom a-
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SiO2 system with MD simulation and relaxed it with the DFT method using a plane-wave 

pseudopotential and a parameter-independent generalized gradient approximation for the 

exchange-correlation potential.  The excellent agreement between DFT and MD simulations with 

regard to the network topology and short- and medium-range correlations further confirms the 

high quality of the interatomic potential for SiO2.  The DFT calculations also show that the 

forces on Si and O atoms deviate less than 4.5% and 6%, respectively, from the MD simulation 

for the same a-SiO2 configuration.  

§2.2 Microcanonical, constant-temperature and constant-pressure ensembles  

 The most commonly used ensemble for MD simulations is the microcanonical ensemble, 

in which the total number of atoms N, the energy E, and the system volume V are kept constant. 

Periodic boundary conditions (PBC) are applied to minimize surface effects. In MD, the 

equations of motion,  

 

� 

˙ r i = ∂H
∂pi

, ˙ p i = −∂H
∂ri

  , (3) 

are integrated in time. In Eq. (3), H is the Hamiltonian of the system:   

 

� 

H = pi
2

2mii=1

N

∑ + φ ri{ }( )  (4) 

 Nosé has developed a canonical ensemble MD method (constant N, V, T) by coupling the 

system to a thermostat, which is modeled with an additional degree of freedom in the 

Hamiltonian:  

 

� 

H = pi
2

2mis
2

i=1

N

∑ + φ ri{ }( ) + ps
2

2Q
+ N f kBText ln(s) . (5) 
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The first and second terms are the kinetic and potential energies of the physical system, and the 

third and fourth terms represent those of the thermostat. kB is the Boltzmann constant; s, ps, and 

Q are the coordinate, momentum, and effective “mass” of the thermostat, respectively. In Nosé 

dynamics, the time step fluctuates due to the time evolution of the scaling factor s. The real time 

and the so-called virtual time are related by 

� 

dt'= dt /s. Hoover has modified Nosé dynamics to 

avoid the virtual time problem. The modified formulation, called Nosé-Hoover dynamics, is 

widely used to control temperature.  

 Martyna et al. have extended Nosé-Hoover dynamics by introducing a layer of 

thermostats in the system. The Hamiltonian of a Nosé-Hoover chain with M linked thermostats is 

given as 

 

� 

H = pi
2

2mii=1

N

∑ +V ri{ }( ) +
psi
2

2Qii=1

M

∑ + 3NkBTexts1 + kB
i= 2

M

∑ Tsi  , (6) 

and the equations of motion are, 

 

� 

qi = pi
mi

, (7) 

 

� 

˙ p i = −∇riφ ri{ }( ) −pi

ps1
Q1

, (8) 

  

� 

˙ s i =
psi

Qi

, (9) 

 

� 

˙ p s1
= pi

2

mii=1

N

∑ − 3NkBText

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − ps1

ps2

Q2

, (10) 

 

� 

˙ p s j
=

ps j−1

2

Qj−1

− kBText

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− ps j

ps j +1

Qj +1

, (11) 
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� 

˙ p sM
=

psM −1

2

QM −1

− kBText . (12) 

The choice of the effective masses of thermostats depends solely on the system of interest. They 

are taken to be, 

 

� 

Qs1
= 3NkBText

ωs
2 , Qsi

= kBText
ωs
2 ,  (13) 

where 

� 

ωs is the intrinsic thermal frequency of the system. 

 Andersen has developed a method to incorporate external pressure (barostat) to study 

isotropic changes in volume. In Andersen’s dynamics, the volume of a system becomes a 

dynamic variable and the atomic positions are normalized by 

� 

V 1/ 3, where V is the system 

volume. Parrinello and Rahman extended Andersen’s dynamics to study structural phase 

transformation by including shape changes in the MD box system. A 3

� 

×3 matrix, the so-called 

H-matrix, spanned by three lattice vectors (h1, h2, h3), describes the dimensions and shape of the 

MD box. The H-matrix becomes a dynamic variable, relating atomic coordinates 

� 

ri = (rix,riy,riz )  

to scaled coordinates 

� 

si = (six,siy,siz ) : 

 

� 

ri = si1h1 + si2h2 + si3h3 =Hsi , (14) 

where 

 

� 

H =
h1x h2x h3x
h1y h2y h3y
h1z h2z h3z

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
. (15) 

The volume of the system V is obtained from V = det(H).  

 MD simulations are also performed at constant pressure and constant temperature in the 

isothermal-isobaric (NPT) ensemble.  In the isothermal-isobaric ensemble, the Hamiltonian is: 
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� 

H =
pi
2

2mii=1

N

∑ + φ  q { },V( ) +
ps
2

2Q
+

pε
2

2W
+ 3N +1( )kBTreq ln(s) + PextV , (16) 

where, s, ps and Q are the same as in the Nosé-Hoover dynamics; pe, and W are the momentum 

and effective mass of the barostat, respectively; Treq is the thermostat temperature; and Pext is the 

barostat pressure. The equations of motion are, 

 

� 

˙ r i = pi

mi

+ pε
W

ri, (17) 

 

� 

pi = −∇riφ ri{ }( ) − 1+ d
3N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
pε
W
pi −

ps1
Q1
pi, (18) 

 

� 

˙ s = ps

Q
, (19) 

 

� 

˙ p s = pi
2

mi

+ pε
2

W
− (3N + 1)kBText

i=1

N

∑ , (20) 

 

� 

˙ V = dVpε
W

, (21) 

 

� 

˙ p ε = dV Pin − Pext( ) + d
3N

pi
2

mi

− ps

Q
pε

i=1

N

∑ . (22) 

The internal pressure Pin is defined as,  

 

� 

Pin = 1
dV

pi
2

mi

+ ri ⋅ ∇ riφ ri{ },V( )
i=1

N

∑ − (dV )
∂φ ri{ },V( )

∂Vi=1

N

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
  , (23) 

where d denotes the spatial dimensions of the systems.  The mass of the barostat is chosen to be 

 

� 

W = (3N + d)kBText
ωb
2  (24) 

where 

� 

ωb is the intrinsic frequency at which the volume of the MD box fluctuates.  

§2.3  Integration algorithms 
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 Numerous integration algorithms have been proposed, and each has advantages and 

disadvantages, e.g., numerical accuracy, algorithmic simplicity, or memory demand.  The most 

commonly used algorithm is the velocity-Verlet algorithm, which is symplectic (phase-space 

conservation) and time-reversible.  

Tuckermann et al. have developed a multiple time step (MTS) integration algorithm, 

called reversible reference system propagator algorithm (RESPA). Usually several regimes 

requiring distinct time resolution exist for one interatomic potential. Stiffer interactions with a 

steeper slope need to be updated more frequently, while it is unnecessary to frequently update 

softer interactions. The idea behind the MTS method is to partition the potential energy function 

into several parts according to their characteristic time scale, and performs time integration with 

appropriate time resolution. Due to its simplicity, stability and flexibility in algorithm design, 

RESPA is a very powerful integration scheme.  

 Derivation of the velocity-Verlet algorithm based on the RESPA is as follows: Let 

� 

Γ(t) 

be a state {ri(t), pi(t)} in the phase space at time t. According to the Liouville’s theorem, the 

phase space volume does not change with time. The time variation of the state 

� 

Γ  can be 

expressed as  

 

� 

i∂Γ
∂t

= −LΓ (25) 

where L, the Liouville operator, is defined as,  

 

� 

iΓ = {...,H}. (26) 

In Eq. (26), 

� 

{...,...} is the Possion bracket. With Hamiltonian given in Eq. (3), the Liouville 

operator becomes  
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� 

iL = v j
∂
∂r j

+ f j
∂
∂p j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

j=1

N

∑ . (27) 

The formal solution of Eq. (26) may be written as,  

 

� 

Γ(t) = eiLtΓ(0) ≡U(t)Γ(0). (28) 

Here, U(t) is a time evolution operator. According to the Trotter decomposition, the following 

relation holds for non-commutable operators: 

 

� 

exp[Δt(L1 + L2)]= exp δt
2
L1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ exp δtL2[ ]exp δt

2
L1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

M

+ O Δt 3

M 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (29) 

where 

� 

δt = Δt /M  and M is an integer. Let the operators L1 and L2 be 

 

� 

L1 = f j
∂
∂p jj=1

N

∑ , L2 = v j
∂
∂r jj=1

N

∑ , (30) 

and M = 1. Substituting them into Eqs. (29) and (30),  

 

� 

Γ(dt) = eiLdtΓ(0)
= eiL1dt / 2eiL2dteiL1dt / 2Γ(0) + O(dt 3)

= e
(dt / 2) f j

∂
∂p jj=1

N
∑

e
dt v j

∂
∂r jj=1

N
∑

e
(dt / 2) f j

∂
∂p jj=1

N
∑

Γ(0) + O(dt 3)

. (31) 

When dt is small enough, Eq. (31) can be implemented as 

 

� 

Γ(0) : vi → vi + f i
mi

(dt /2)

Γ(dt /2) : ri → ri + vidt

Γ(dt) : v→ v + f i
mi

(dt /2)

, (32) 

This is, in fact, the velocity-Verlet algorithm.   

§2.4  Parallel MD algorithms 

 In an MD simulation, the force on an atom i is determined by the positions of neighbor 

atoms within a finite interaction range. For this reason, spatial decomposition is commonly used 
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to parallelize MD simulations. Using the divide-and-conquer strategy, the spatial decomposition 

technique divides the simulation volume into 

� 

P = Px × Py × Pz  sub-domains of equal volume, 

which are mapped onto processors in a parallel computer. Atom i at position ri = (rix, riy, riz) 

belongs to the spatial domain of processor p: 

 

� 

p = pxPyPz + pyPz + pz , 

 ⎣ ⎦αααα LPrp i /= .  (33) 

where α denotes a Cartesian coordinate and Lα represent the lengths of the MD box. Information 

about atomic positions and velocities and atom types within the spatial sub-domain is assigned to 

the processor p. The domain of every processor is extended to access positions of atoms within a 

cutoff distance from the boundaries of neighboring processors, and the subsequent force 

calculation is then local to the processor. Figure 3 shows the “extended” domain (red) of a 

processor p. Atom information near the boundary of the neighboring processors is cached into p.  

 

p 
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Figure 3: Schematic of a two-dimensional spatial decomposition. To calculate force, the 

internode communication is required to cache atomic coordinates from neighbor domains. After 

updating atomic coordinates, atoms outside the resident domain are transferred via message 

passing.  
 

 To minimize the communication time, each processor is assigned a sufficiently large 

number of atoms so that caching of atoms from neighboring processors is negligible compared to 

the local computation time. The internode communication involves sending and receiving data 

from 26 neighboring domains. In the “caching” process, attributes of the skin-layer atoms are 

sent to left, right, top, bottom, back and front nearest-neighbor processors consecutively. When 

atoms move out of the domain of a processor after the position updates, data attributes of those 

atoms are transferred to the neighboring processor. Message passing interface (MPI) library is 

used to communicate between processors.  

 Linked-cell list and neighbor-list methods are also used in our MD simulations. The 

linked-cell list method decomposes the subsystem into smaller cells whose dimensions are 

slightly larger than the potential cutoff, rc + δ , where δ is the “skin”.  To calculate the force on 

an atom, one simply needs to calculate the contributions from atoms in the same cell and from 

atoms in the 13 nearest-neighbor cells (with use of Newton’s third law).  

§2.5 Performance of parallel MD algorithms  

 Shared-memory and distributed-memory systems are available for parallel 

computations. In a shared-memory system, more than one processor can access the same 

memory. The size of the memory assigned to the processor is limited. Multi-processor 
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computers, where each processor runs tasks independently of other processors, belong to this 

category. Processors in one node have the advantage of fast data communication speed.   

 In a distributed-memory machine, each processor has its own private memory and inter-

processor communication is done via the interconnect. The data communication scheme in such 

a machine is implemented by the end user using a parallel programming library, such as Message 

Passing Interface (MPI). This architecture has the scalability advantage. A Beowulf cluster is an 

example of a distributed-memory system. 

 A hybrid distributed-shared memory system is a combination of the above two 

architectures. It consists of linked computing nodes, where each node is a multi-processor 

machine. The 6,020-processor Linux cluster at the High Performance Computing Center (HPCC) 

at USC and the 2,048-processor Linux clusters in our Collaboratory for Advanced Computing 

and Simulations (CACS) use this architecture. 

 The efficiency, E, is an important measure of parallel algorithm. It is defined as, 

  
p),T(WPW

T(W,1)W
p
S

E
p1

pp == .  (34) 

Sp is the speedup of the program on p  processors: 

 

� 

Sp = S(W , p)
S(W ,1)

=
WpT(W ,1)
W1T(W , p)

, (35) 

where T(W,1) and T(W,p) are the total execution times on 1 and p processors, respectively. In an 

ideal situation, a simulation on p processors should be p times faster than on a single processor 

with the same workload. Therefore, an ideal algorithm has an efficiency of 1.   
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 Figure 4 shows benchmark results for isogranular (constant amount of computation per 

processor) scalability on 212,992-processor BlueGene/L at Lawrence Livermore National 

Laboratory and 131,072-processor BlueGene/P at Argonne National Laboratory. In both cases 

the parallel efficiency exceeds 0.97, showing excellent parallel scalability of the divide-and-

conquer scheme for MD simulations.  

 

 
Figure 4:  Isognranular scalability of parallel MD algorithm on BlueGene/L&P. The number of 

atoms per processor N/P is 2,044,416.  
 
§3 RESULTS 

§3.1  Interaction and coalescence of voids and nanoductility in silica glass 

We have performed billion-atom MD simulations to study the effect of dilatational strain 

on an ensemble of spherical nanovoids in silica glass. Two sets of initial configurations of voids 

are considered; (i) voids in a regular configuration and (ii) random, non-overlapping distribution 
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of voids. The void diameter is 3nm and the minimum void-void separation (center-to-center) in 

both systems is 6nm. 500 voids in total are placed at the center of the specimen, about 100nm 

from the boundaries in the x and y directions and 60nm from the boundaries in the z direction 

(the area enclosed by red-dotted line in Fig. 5).  The system size is 319.5×296.7×179.7nm3.  

To examine the growth of and the interaction between a pair of voids we have also 

performed simulations of 1 million and 15 million atoms with various void sizes and initial inter-

void separations. The dimension of the 1 million-atom system is (25.6nm)3 and of 15 million 

atoms (62.8nm)3. We apply periodic boundary conditions in the x, y, and z directions. The 

simulations are performed at constant strain rates of 108 or 109 sec-1. The strain is applied using 

the Parrinello-Rahman approach.  

 

 
Figure 5: Schematic of 500 void simulation setup. Red-dotted lines indicate the initial location 

of the voids. Sheets of voids are arranged in either regular array or random array. 
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All silica glass specimens were prepared by the melt-quench method and well 

thermalized at room temperature. After creating spherical voids by removing atoms, the 

conjugate gradient method is used to relax the system. Then the systems are gradually heated to 

room temperature and thermalized again. The total simulation times are 550ps for the 1 million-

atom and 15 million-atom systems, and 120ps for the billion-atom systems.  

 

 
 

Figure 6: (a) Snapshot of voids and nanocavities at a strain rate of 108 sec-1. (b) Strain 

dependence of the average porosity per void in the two-void system, φ2, relative to the porosity 

of the single-void system φ1. (c) Si-O pair distribution functions and (d) Si-O-Si bond angle 

distributions in the middle of the inter-void ligament in the unstrained and strained systems. 
 

The snapshot in Fig. 6(a) shows the growth of two voids in a million-atom system. The 

strain rate is 108 sec-1, the initial void diameter is 3nm and the initial center-to-center distance 

between the voids is 6nm. Up to a strain of ε  = 4%, the voids grow independently as their 
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diameters increase from 3nm to 3.5nm. Further increase in the strain nucleates damage cavities 

in the intervoid ligament region. To distinguish the effect of intervoid interaction from individual 

void growth, we have performed million-atom simulations for a single void under exactly the 

same conditions. Figure 6(b) shows the ratio of the porosity per void in the two-void system, 

φ2, to the porosity of the single-void system, φ1, at small strains. Above ε = 7%, the ratio φ2/φ1 is 

large and nanocracks appear on the void surface in the two voids system. In addition, damage 

nanocavities nucleate and grow in the inter-void ligament region. Finally at ε = 8%, the ligament 

fractures due to coalescence of the cavities. We find that the relation between intervoid ligament 

distance and initial void size in silica glass agrees qualitatively with Brown-Embury criterion for 

ductile materials.  

Significant structural changes occur in the ligament region due to void-void interaction 

prior to ligament fracture. Figure 6(c) and (d) show Si-O pair correlation function, 

� 

gSi−O (r), and 

Si-O-Si bond angle distribution, 

� 

PSi−O−Si (θ ) , before and after the strain is applied. At ε = 8%, the 

height of the first peak in 

� 

gSi−O (r) decreases significantly from the unstrained case. This is 

caused by Si-O bond breaking and a decrease in the atomic coordination. The height of the 

second peak in 

� 

gSi−O (r) also drops, indicating structural changes in the –Si-O-Si-O-Si– ring. In 

� 

PSi−O−Si (θ )  at ε = 4%, the peak position shifts towards higher angle and the peak width becomes 

narrower than in the unstrained case. On increasing the strain, 

� 

PSi−O−Si (θ )  partially recovers the 

unstrained structure because of Si-O bond breaking. 
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Figure 7: Bond switching mechanism involving non-bridging O atoms is shown in (a) and (b) by 

red and white dashed lines between blue and white atoms. In (c), the white dashed line indicates 

bond switching between white and green O atoms. Panel (d) shows Si-O-Si bond angle 

distribution for the rings involved in the bond-switching events. Red and yellow spheres 

represent Si and O atoms, respectively. 
 

Our simulations reveal a novel damage cavity nucleation mechanism via strain-enhanced 

defect transport; see Fig. 7(a)-(c). In silica glass, each silicon atom has four nearest neighbor 

oxygen atoms forming a SiO4 tetrahedron and oxygen atoms are bonded with two silicon atoms 

connecting SiO4 tetrahedra at the corners. This structure provides short-to-middle range order 

consisting of nanometer size –Si–O–Si–O–Si–O– rings. Figure 7(a) displays a snapshot of the 

unstrained Si-O bond network of Si (yellow) and O (red) atoms in the intervoid ligament. The 

blue, green, and gray shaded areas highlight regions enclosed by a 7-, 6- and 5-membered -O-Si-

O-Si- ring, respectively. The blue sphere shows an initially undercoordinated O (only one Si as a 

neighbor atom) that belongs to the 7-memberd ring. The green and white spheres are O atoms 
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with normal coordination (2) at the beginning. Later on, these atoms play a pivotal role in the 

nucleation and growth of a nanocavity. Increasing the strain to 1%, the undercoordinated O 

(blue) acquires normal coordination by bonding with a Si that was one of the neighbors of O 

(white) (see Fig. 7)). This O (white) atom ruptures a bond with the Si and becomes 

undercoordinated. As a result, the 5-membered ring (gray) becomes a 12-membered ring 

(increasing the volume of open space) and the 7-membered ring (blue) shrinks to a 5-membered 

ring. Similarly at a strain of 4%, one of the Si atoms connected with an O (green) breaks its bond 

and forms a new bond with O (white) (see Fig. 7(c)). Bond switching from Si-O (green) to Si-O 

(white) results in 11-membered (gray) and 10-membered (green) rings. Due to two consecutive 

bond-switching events, an undercoordinated O effectively migrates. The transport of non-

bridging O is driven by stress gradients.  This mechanism nucleates nanometer size voids. We 

find that 

� 

PSi−O−Si (θ )  for the rings involved in the bond-switching event show considerable 

structural change; a new peak at 160º appears due to strain-induced growth of rings in addition to 

a peak at 143º under which is present in unstrained a-SiO2. We have observed the same 

mechanisms for the nucleation and growth of damage nanocavities and intervoid ligament failure 

in the 15 million-atom SiO2 glass at a strain rate of 109 sec-1. 
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Figure 8: Growth of voids and void coalescence in a billion-atom system under dilatational 

strain. The strain rate is 109 sec-1. Panels (a)-(c) show damage in a regular array of voids; and 

panels (d)-(f) show damage in random distribution of voids. For clarity, a slice of the entire 

system is shown; (a) crack nucleation on void surfaces at ε=9%;  (b) and (c) show void 

coalescence and inter-void ligament failure at ε=10.5% and ε=12%, respectively. (d) a snapshot 

of randomly distributed voids; (e) onset of void coalescence and ligament failure at ε=8%; and 

(f) formation of a few large cavities at ε=10%. 

 

 Figure 8(a)-(f) show the growth and coalescence of voids when they are arranged in a 

regular array or distributed randomly. These are the results of billion-atom simulations in which 

the systems are subjected to a dilatational strain rate of 109 sec-1. In the case of a regular array of 

voids (Fig. 8(a)-(c)), sheets of nanocavities nucleate in inter-void ligaments and small cracks 

appear on void surfaces at ε = 4.5%.  Nanocavity nucleation begins in ligaments bridging the 
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nearest and second nearest neighbor voids (diagonal ligaments). The voids and nanocavities in 

ligaments continue to grow until the strain reaches 9%, and then a number of ligaments fracture 

at the corner boundaries of the regular array (Fig. 8(a)). Figure 8(b) shows coalescence of 

multiple voids at slightly larger strain ε=10.5%. These fractures of intervoid ligaments locally 

release strains, and as a result voids shrink and cracks on the void surfaces begin to heal. At 

ε=12%, many voids coalesces into a few large cavities (Fig. 8(c)). Figure 8(d)-(f) show 

snapshots of randomly distributed voids at ε=0%, 7%, and 10%, respectively. Overall the void 

growth and coalescence are similar to the case of a regular array of voids. As the strain increases, 

the voids first grow independently without any significant damage around them. However, 

surface cracking and void coalescence start at a strain of ~8%. The void-void interaction and 

eventual coalescence are again mediated by the nucleation and growth of nanocavities in inter-

void ligament regions. 
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Figure 9: (a)-(c) volumes of coalesced cavities in the random void array system at ε=5%, 8% 

and 10%, respectively. (d) Porosities vs. strain in billion-atom systems containing 500 identical 

voids distributed regularly and randomly.  
 

 We have performed percolation analysis to investigate the porosity as a function of the 

applied strain. Figure 9(a)-(c) show the spatial distribution of connected empty volumes in the 

randomly distributed voids at ε=5%, 8% and 10%, respectively. At small strain, the size of each 

void is nearly identical. Many voids merge into a few large cavities at ε=8%, where a sharp kink 

appears in the porosity-strain curve (see Fig. 9(d)). Figure 9(c) shows a mosaic of cracks 

resulting from the percolation of voids through the system at a strain of 10%. 
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§3.2 Dynamics of wing cracks and nanoscale damage in silica glass  

Figure 10(a) schematically shows the wing crack simulation setup. We first prepared a 

bulk a-SiO2 system with dimensions 120

� 

×120

� 

×15 (nm3) starting with an ideal β-cristobalite 

crystal and using the melt-quench method.  Next, PBCs are removed in the x and y directions and 

a 40nm long pre-crack is inserted. Subsequently, the system is relaxed and quenched to 0K. After 

applying the conjugate gradient method, the system is thermalized at 10K and confined by purely 

repulsive walls. A rigid indenter applies an impulse load to the upper half of the sample, but the 

lower half is not subjected to an external load. The indenter speed is kept constant, either at 150 

m/s or 375 m/s, which are 5% and 12.5% of the Rayleigh wave speed VR (~ 3000 m/s) in silica 

glass, respectively.  

 

 
Figure 10: Setup of the wing-crack simulation. A yellow rectangular plate represents a rigid 

indenter and the blue parallelepiped is the pre-cracked silica glass.  The pre-crack length is 40 

nm. The silica sample is confined in the x and y directions and PBC is applied in the z direction. 

Inset shows a close-up view of the pre-crack tip and resolved coordinates x’ and y’ used for 

stress calculation. (b) Schematic of the crack-morphology analysis. The system is divided into 

small cells and connected cells are identified by breadth-first search. The blue cells represent the 

pre-crack and cracks emanating from there. Red, yellow, and green cells indicate damage 

nanocavities. 
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The crack morphology is examined using percolation analysis  (See Fig. 10(b)). We 

partition the simulation system into small voxels, and each voxel is assigned a flag indicating 

that the voxel is “filled” if it contains an atom or otherwise “empty”. The voxel dimensions are 

(4.5 Å)3, which is the second nearest neighbor Si-O distance. Breadth-first search algorithm 

gives the shape of the crack for any given atomic configuration. Any set of connected “empty” is 

considered a damage cavity if those voxels are disconnected from the pre-crack. 

In addition to the analyses of crack and vodi morphologies, we monitor stress 

distributions around the pre-crack. Atomistic-level stresses for distances greater than 10nm from 

the pre-crack tip show good agreement with mode II stress distributions in linear elastic fracture 

mechanics (LEFM). However, the stress distributions in the MD simulation differ significantly 

from the LEFM results for distances less than 10nm from the pre-crack tip because of the 

discrete nature of the material at such short distances. 

 

 

Figure 11: (a) Snapshot of the pre-crack tip showing silicon (purple) and oxygen (light blue) 

atoms, and the nucleation of nanocavities (black) due to frictional sliding of the crack surfaces; 

(b) atomistic view of kinks formed by nanocavities (black); (c) resolved tensile stress σy’y’, along 
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the crack front (z) as a function of the distance, x′, from the pre-crack tip. The resolved 

coordinates are obtained by rotating x and y axes 70º around the z axis. The impact speed is 

0.05vR, where vR is the Rayleigh wave speed. 
 

When the compression wave generated by the indenter pushing the upper half of the 

silica specimen (above the pre-crack from left to right in Fig. 10(a)) reaches the pre-crack tip, the 

top surface of the pre-crack begins to slide relative to the bottom surface.  This sliding motion 

nucleates damage nanocavities at the pre-crack tip. Figure 11(a)-(b) show atomic views of the 

nanocavity nucleations (black) and kinking of the crack. Figure 11(c) is a plot of the stress 

component σy’y’, which is the perpendicular to the kink direction, x', of the pre-crack. The 

damage nanocavities grow and the crack bends 70° from the pre-crack in the direction of the 

maximum mode I tension. This MD result agrees well not only with the LEFM, but also with 

macroscopic quasi-static and dynamic compression experiments on brittle materials.  
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Figure 12: Wing crack formation and growth, and damage cavities (red, yellow, green, dark 

blue, and orange).  
 

MD simulations also reveal that nanocavities coalesce to form crack nanocolumns. Figure 

12 shows the formation and growth of a wing-crack at (a) 19ps and (b) 21 ps after the load is 

applied. Nanocavities (red, yellow, orange, green and dark blue) grow around the pre-crack and 

merge into nanocolumns. A couple of pico seconds later, these nanocavities and nanocolums join 

to form a wing-crack. Nanocavitation is observed in the tensile stress region ahead of the moving 

crack tip. After reaching a length of 9nm, the wing-crack encounters a compression wave 

reflected from the right end of the system (see Fig. 10(a)). This makes the wing crack recede in 

the next 7 ps at an average speed of 1,300 m/s. 
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Figure 13: Second healing of the wing crack. (Right) Snapshot of the wing crack and pre-crack 

right before the wing crack recedes. The wing-crack tip splits into two columns creating a few 

damage cavities (green and red) near the tip. (Middle) In the next 4 ps the wing crack recedes 

considerably and leaves damage cavities (red, yellow, green and blue) behind. (Left) Snapshot of 

the wing crack and cavities after healing. White arrows indicate positions of the wing crack tip.  
 

We observe that the pre-crack grows when the wing crack is healing and vice-versa. 

During the first healing of the wing crack, the pre-crack length increases by 5nm over 11ps via 

nucleation and coalescence of nanocavities formed in front of the pre-crack. After that, the pre-

crack starts receding and is partially healed while the wing crack reemerges and propagates at an 

average speed of 1,500 m/s.  Figure 13 shows three snapshots of the wing crack during the 

second retreat at 72ps (right), 76ps (middle) and 80ps (left) respectively. The right snapshot 

shows that after reaching a maximum length of 27nm the wing crack encounters compression 
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waves from the confining walls. Two large nanocativies (green and read) and a few small 

cavities appear ahead of the wing crack and around the pre-crack tip. The middle snapshot (at 

76ps) shows that the wing crack recedes significantly leaving behind large (blue and green) and 

small (red and yellow) nanocavities. The wing crack stops receding and leaves behind damage 

nanocativies (see the left snapshot at 80ps). The average speed of the receding wing crack is 

about 800 m/s and the residual length of the wing crack is 13nm. The wing crack propagates and 

retreats repeatedly, and this kind of “initiation, growth and arrest” of wing cracks under lateral 

confinement have also been observed in dynamic compression experiments on a ceramic glass. 

 

 
Figure 14: Snapshots of the wing crack and nanocavities at 0.125vR, where vR is the Rayleigh 

wave speed of silica glass. (Right) snapshot shows the wing crack turned in the loading direction; 

(Middle) a large cavity (red) splits off the wing crack; (Left) after 4 ps the cavity merges with the 

wing crack. A secondary wing crack appears behind the main wing crack.  
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At the higher impact loading speed, vi = 0.125vR, we observe similar mechanisms for 

wing crack formation via the nucleation, growth and coalescence of nanocavities and 

nanocolumns. The pre-crack tip again kinks towards maximum mode I tension (70° around the z 

axis) and grows to a length of 21nm over 17.5 ps. Over the next 10 ps, the wing crack propagates 

in the direction of maximum compression at one-third the speed of Rayleigh waves. This change 

in the direction of the wing crack propagation towards maximum compression is always 

observed in quasi-static and dynamic compression experiments. 

We find significant differences in the healing of the wing crack and resulting damage 

nanocavities from those at the lower impact loading speed. In Fig. 14, the right snapshot (at 40 

ps) presents the wing crack and nanocavities right after the crack reaches a maximum length of 

31nm. At 45ps, the wing crack splits off and leaves behind a 20nm long cavity (red) due to the 

arrival of compression wave reflected from the sidewalls. The crack continues to heal and the 

cavity rejoins the crack shortly after the passage of compression wave. A secondary wing crack 

nucleates and residual damage cavities remain ahead of the retreating crack (at 56ps). On 

running the simulation longer, we again observe repeated growth-and-retreat sequence of the 

wing crack. 

§4 WORK IN PROGRESS 

Currently we are investigating (1) the effect of strain rate in MD simulations on 

deformation and fracture in silica glass, and (2) stress corrosion cracking of a-SiO2 in the 

presence of water using a hybrid, multiscale approach.  We are performing multimillion-atom 

simulations of damage evolution during crack propagation in silica glass over microsecond 
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time scales.  In this simulation, the strain rate is several orders of magnitude less than those in 

the simulations presented in §3.1 and §3.2. 

Stress corrosion cracking (SCC) is a challenging simulation problem.  To do meaningful 

SCC simulations, multiple size domains need to be considered and each of these domains 

requires a different computational approach.  The domains need to be nested, as regions far from 

process zones do not need the detailed description necessary for accurate prediction near the 

crack tip. 

Near the crack tip, quantum mechanical (QM) simulations based on density functional 

theory (DFT) are performed.  Usually, the QM region is surrounded by an effective force field 

(EFF) MD.  The QM/EFF boundary has been the subject of many studies over the last few years, 

and although this has resulted in several reasonably successful hybrid simulation schemes, a 

straightforward, material-independent communication strategy between these methods still 

remains elusive.  The problem at the QM/EFF interface lies in the fact that the charge flow and 

bond breaking events at the QM electronic scale are difficult to translate into the regime of rigid 

bonding/fixed point charges usually employed at the EFF-level.   

To facilitate a smooth transition between QM and EFF, it is necessary to insert a 

computational method that shares many common features with both approaches.  It must have 

the ability to dissociate and create chemical bonds and handle charge flow by employing a 

chemical-environment dependent charge model. Goddard and co-workers have developed the 

first-principles based ReaxFF reactive force fields to interface QM and EFF-methods.  ReaxFF 
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studies have already been reported for a wide range of materials, including ceramics, metals and 

metal oxides. 

Our effort to simulate SCC in silica glass builds upon our recent work on multiscale 

QM/MD/finite element (FE) simulations, including ReaxFF-MD studies of reactive materials. 

We have performed a hybrid MD/DFT simulation study of the reaction of water at a crack tip in 

silicon. The simulation shows significant dependence of the reaction between H2O molecules 

and the crack on the stress intensity factor.   

We have also performed hybrid MD/FE simulation on a silicon/silicon-nitride nanopixel, 

which is commonly used in microelectronics. The hybrid approach involves MD simulation near 

the Si/Si3N4 interface and FE modeling deep into the Si substrate, thereby significantly 

increasing the accessible length scales and greatly reducing the computational cost.  

Displacement fields of the full MD and the hybrid MD/FE simulations are in excellent agreement 

with each other.  The MD/FE results for residual stresses in the nanopixel are also in agreement 

with the full MD calculation. 

Recently we have successfully demonstrated a tightly coupled, hybrid QM/MD 

simulation of SIMOX (separation by implanted oxygen) technique. The simulation ran on six 

supercomputers in the US (National Center for Supercomputing Applications, Pittsburgh 

Supercomputing Center, University of Southern California) and Japan (Advanced Industrial 

Science and Technology, Tokyo Institute of Technology, and University of Tokyo) using a 

reservation-based sustainable adaptive Grid supercomputing paradigm.  
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 Our latest effort in hybrid simulation algorithms involves the development of an 

atomistic/continuum simulation scheme for solid-liquid interfaces.  We have coupled MD with 

the mesoscopic lattice-Boltzmann (LB) method using the Schwartz alternating method, which 

iteratively finds a consistent solution in the atomistic and continuum domains by implicitly 

imposing flux continuity but without direct exchange of fluxes. In our implementation, PBC is 

not invoked but the density in the MD region is kept constant by applying a mean boundary force 

and by using specular walls and an efficient particle insertion scheme. 

In the continuum domain, we use the LB method to solve a minimal form of the 

Boltzmann kinetic equation ignoring all details of molecular motion except those needed to 

recover hydrodynamic behavior at the macroscopic scale. For hierarchical fluid flow simulations, 

we have developed an extensible LB computational framework for tera-to-petascale 

parallel/distributed platforms. The LB framework includes scalable algorithms and tools as well 

as capabilities for handling, analyzing, and visualizing petabyte simulation datasets. It allows 

collaborative construction and execution of complex, multi-component, computationally 

demanding hybrid numerical simulations of fluid flow. We have achieved scalability beyond 105 

processors through linear-scaling algorithms and performance-optimization techniques. 

Recently, we have performed LB simulations of fluid flow through a network of cracks in 

amorphous silica on a cluster of cell processors using PlayStation3 consoles; see Fig. 15.  
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Figure 15: Snapshot of fluid flow in fractured silica performed on the PlayStation3 cluster.  Here 

the magnitude of the fluid velocity is color-coded. 
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